
Bilkent University

Department of Computer Engineering

Senior Design Project

Group: T2317 - RoadVisor

Detailed Design Report

Group Members:

Ahmet Faruk Ulutaş - 21803717 - faruk.ulutas@ug.bilkent.edu.tr

Ammaar Iftikhar - 21901257 - ammaar.iftikhar@ug.bilkent.edu.tr

Arda İçöz - 21901443 - arda.icoz@ug.bilkent.edu.tr

Emin Berke Ay - 21901780 - berke.ay@ug.bilkent.edu.tr

Nurettin Onur Vural - 21902330 - onur.vural@ug.bilkent.edu.tr

Supervisor:

Asst. Prof. Dr. Hamdi Dibeklioğlu

Innovation Expert:

Cem Çimenbiçer

Course Instructors:

Erhan Dolak

Tağmaç Topal

13.03.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements of the Senior

Design Project course CS492.



Table of Contents

1. Introduction 3
1.1 Purpose of the system 3
1.2 Design Goals 4

1.2.1. Reliability 4
1.2.2. Performance 4
1.2.3. Usability 5
1.2.4. Privacy 5

1.3 Definitions, acronyms, and abbreviations 5
1.4 Overview 6

2. Current Software Architecture 7
3. Proposed Software Architecture 8

3.1. Overview 8
3.2. Subsystem Decomposition 9
3.3. Hardware/Software Mappings 9
3.4. Persistent Data Management 9
3.5. Access Control and Security 10

4. Subsystem Services 10
4.1 Interface Subsystem 10
4.2 Application Logic Subsystem 11
4.3 Server Subsystem 12

5. Test Cases 13
6. Consideration of Various Factors in Engineering Design 35
7. Teamwork Details 37

7.1 Contributing and Functioning Effectively on the Team 37
7.2 Helping creating a collaborative and inclusive environment 38
7.3 Taking lead role and sharing leadership on the team 39

References 39



1. Introduction

1.1 Purpose of the system

Navigation in unknown areas is a difficulty faced by automobilists. The automobilist may
be an experienced taxi driver or a novice. Navigators don’t only face the hurdle of
driving through unknown streets, but also face the task of keeping track of road
information like traffic lights and street signs simultaneously. The presence of so much
information for the driver to process might lead to increased mistakes or accidents [1].
There are other issues that pertain to the road, like boundaries and crowd density, that
play a crucial role to inform the driver. If a greater amount of information is presented to
the driver with more ease, the driver will be able to perform better.

While there are many applications that attempt to present the driver with directions to
the destination, there aren’t many that help simultaneously inform the driver of other
necessary information simultaneously. These applications mostly focus on delivering the
queried information to the driver like the location of certain places and the distance to
the next turn. Information about processing real-time information for the navigator on the
road is not prioritized by advanced applications like Google Maps. Our application
attempts to fill the disparity between the user view and the application. RoadVisor
assists the drivers in real-time using Machine Learning and Augmented Reality.

The main motivation behind RoadVisor is to assist the driver in processing the real-time
events on the street fetched using the mobile phone camera while also providing the
user with an improved street view and directions on their mobile phones. The ability to
process information and the information fetched by the application is constrained by the
processing capabilities of the devices. The application will use different Machine
Learning methodologies, like Deep Neural Networks, and APIs, like Google Maps
Platform API, to continuously inform the driver about road information and directions.
Augmented Reality will try to ensure that the driver does not miss the road information
while consulting the mobile for directions or other information.

The application will mitigate traffic violations, like violations of street signs and traffic
lights, by drivers. The application will try to fill the void in the navigation application
industry by presenting a viable and better alternative to the ones available in the market.
Our application will be an attempt to assist the driver without distracting or bugging to
decrease the fatalities caused by road accidents or car crashes [1]. The application will
be built incrementally and optimized for usage on mobile devices.



RoadVisor aims to have a place in the Offering section and be a Product Performance
focused application according to the 10 Types of Innovation Wheel by Doblin [2]. We
believe that the AR-supported navigation feature distinguishes RoadVisor from other
applications and provides better and more comfortable functionality. With these
distinguishable features, RoadVisor will be an incremental innovation project and
optimization will be the key element as the goal is to provide a better user experience.

1.2 Design Goals

1.2.1. Reliability

● It’s crucial for RoadVisor to give navigation information correctly. This means that
the application has to be reliable in terms of fulfilling the expected necessities
such as preparing the route accurately, placing the direction arrows correctly,
showing true traffic light and sign information messages, and successfully
sending the SOS messages with the location of the user.

● RoadVisor has to operate without significant interruptions and therefore provides
navigation service and other promised services during the entire car trip duration
starting from the moment that the destination is selected until the user arrives at
it given that the necessary conditions are satisfied such as battery and
connection.

1.2.2. Performance

● RoadVisor has to have a high standard in terms of performing well in frequent
conditions and in a short duration. Since the application needs to constantly
extract input from live camera feeds and analyze them frame by frame, the frame
rate has to be above a tolerable level so that the application works without
significant delay.

● The detection models used within RoadVisor have to perform with high accuracy
rates for being considered reliable.

● The application needs to work smoothly with the touch screen which requires
RoadVisor to have a fast response time.

● RoadVisor is designed mainly to work in a mobile environment. In this respect,
the application has to perform well to satisfy its features without being overly
affected by hardware limitations of mobile phones.



1.2.3. Usability

● RoadVisor is an application that aims to reach a very wide range of audience.
Essentially, all drivers (especially ones who do not possess the latest
technological tools in their cars) are targeted as potential users of our application.
In this respect, the application needs to be understandable and easy to use by
the target audience.

● RoadVisor needs to be compatible with a wide range of Android phones given
that they are above a determined version.

● RoadVisor needs to have a highly responsive, simple-looking user interface.
Given that the user will be busy with driving as well the UI has to be designed in
such a manner that it will not have very complex operations for the user that take
various steps. Instead, the parts that require user interaction must be large
enough, easily locatable on the phone screen, and respond within a short
amount of time (less than a minute).

● Since the user will be driving meanwhile, the application must not cause
unnecessary distraction or irritate the user. This will be achieved by avoiding
using irritating alert sounds, having a simple UI layout, and decreasing the need
for user input (such as automatically closing pop-ups after a while).

1.2.4. Privacy

● Confidential information such as contact numbers, destination information, or
exact route data will not be used with third parties to respect user privacy.

● To minimize the risk of exposure of personal information in a possible attack,
confidential data will be kept encrypted.

1.3 Definitions, acronyms, and abbreviations

● Augmented Reality (AR)
● Machine Learning (ML)
● You Only Look Once (YOLO): “YOLO algorithm aims to predict a class of an

object and the bounding box that defines the object location on the input image. It
recognizes each bounding box using four numbers that are center of the
bounding box, width of the box, height of the box. In addition to that, YOLO
predicts the corresponding number for the predicted class as well as the
probability of the prediction” [1].



1.4 Overview

RoadVisor uses Augmented Reality to assist the driver to navigate. The view provided
to the user includes the road view and additional information that improves the
information output to the driver. The features RoadVisor offers are:

Augmented Reality Supported Navigation: The feature provides the user the directions
to navigate by showing arrows in the augmented reality view. It also displays road
boundaries and turns. The user can view the road as well as the directions. The feature
will be implemented using image processing and computer vision techniques along with
map api’s. We will use Google Geospatial API to place AR elements as arrows onto the
bounded road. Mapbox Navigation API fetches and returns the turn-by-turn navigation
information.

Traffic Light Detection: The feature informs the driver about traffic light signals. The
feature helps to improve driver’s awareness of traffic lights. The information utilized by
the feature will be fetched using the back camera of the device. The feature is in line
with our motive to help drivers process road information with ease. The feature will be
implemented using Computer Vision, particularly YOLO object detection methods. The
dataset selected for this feature is Bosch Small Traffic Lights Dataset [2]. This particular
dataset has 13427 road images with a resolution of 1280x720 pixels and has around
24000 annotated traffic lights that are marked with bounded boxes.

Sign Detection: The application will help users be aware of the traffic signs that might be
on the road like ‘school ahead” or “danger ahead.” The signs the feature will recognize
are expected to follow the conventions of the selected dataset, namely Traffic Signs
Dataset in YOLO format [3]. The implementation of this feature will also utilize YOLO
algorithm for object detection. The feature assists the user to prevent violation of signs
that might lead to other consequences like fines.

Pedestrian Detection/Crowd Density Analysis: The application will provide information to
the user about the presence of pedestrians and crowd in a particular location. The
application will use crowd-counting techniques to implement this feature [6]. We can
implement this feature using YOLO object detection as well. When it comes to the
dataset, Caltech Pedestrian Dataset is the choice having approximately 10 hours of
640x480 30Hz video taken from a vehicle driving through regular traffic in an urban
environment. About 250,000 frames (in 137 approximately minute long segments) with
a total of 350,000 bounding boxes and 2300 unique pedestrians were annotated. The
annotation includes temporal correspondence between bounding boxes and detailed
occlusion labels [4].



Emergency Alert: Assisting our users during times of danger is a feature that we want to
include. In a risky situation such as attempt of breaking into the car, breakdown of the
car, attacks on the vehicle or any other problematic situation that involves the potential
risk of danger, the user will be able to activate the S.O.S feature that will notify the
selected close contacts. The feature might be able to save the lives of people by
immediately contacting the concerned authorities.

2. Current Software Architecture

Using machine learning-backed features in mobile applications is currently a common
theme. Therefore it is possible to find decent applications that work on detecting
pedestrians, traffic lights/signs and implementing augmented reality navigation.
However, after our search in application markets, to our knowledge, there is currently no
application that provides all these features in one complete package. Hence, we thought
it is best to give some example applications that implement these features and discuss
the similarities and differences.

The first application is called Car Assistant Android [5], and it detects traffic signs. This
application uses the MobileNet SSD model, which utilizes the TensorFlow object
detection feature [6], and it uses its own dataset. In the provided demo video, the
confidence level of detected signs is between 75%-90%. Our application implements
the YOLO algorithm for sign detection, and we use the European sign dataset because
there are very few differences between it and Turkish signs. The feature is still in
development, and therefore the confidence level results will not be discussed here.

The following application is called TrafficLights Detector For Android [7], and it is used
to detect traffic lights. This application mainly uses Caffee [8] framework along with
TensorFlow, and the dataset is provided by David Brai [9]. Along with detecting traffic
lights, it also detects which color the lights are currently at. This application itself can be
called very similar to our traffic light detection feature because currently, we are also
developing this feature to detect both lights and colors.

Next, we have the pedestrian detection feature. Machine Learning models for mobile
devices can be found easily, but finding an example application was relatively more
challenging. This application [10] has a demo video where they demonstrate car and
pedestrian detection features. It is developed with OpenCV and is only available for
Android. Our application only focuses on pedestrian detection as cars are already
relatively easy to detect by drivers. This feature is also in development, but we believe
that RoadVisor has the potential to be a preferred application for this feature,
considering that the application markets are far away from being saturated with
similar-featured applications.



Lastly, it is possible to reach the repositories of augmented reality navigation
applications for mobile phones. When we did a market search for these applications, we
observed that lots of them utilized augmented reality features for indoor navigation [11].
RoadVisor’s inspiration to use augmented reality comes from Mercedes-Benz’s
navigation feature [12]. However, this feature is only available on high-tier Mercedes
cars. Additionally, even if Phiar’s AR Navigation application [13] is similar to RoadVisor,
it is not published for the use of the general public. Therefore we believe that RoadVisor
has the potential to be the candidate application for these needs.

3. Proposed Software Architecture

In this section, proposed software architecture will be discussed and explained in detail.

3.1. Overview

In this section, our system’s proposed software architecture and subsystem
decomposition is explained in detail. We have several design goals to aim and lead us
through the project.The architecture has been designed to meet the functional and
non-functional requirements of the software, such as performance, security, reliability,
and usability, while also being flexible and adaptable to future changes and
enhancements. For this reason our project consists of several layers. The layers are the
user interface layer, the application layer and the data layer. The user interface layer is
the layer where the user interacts with the system and it is the part where the users will
see when they open up the application on their Android mobile phone. The application
layer is the layer where the business logic is handled and the models are incorporated
into the system. The data layer deals with the data our application collects and handles.

This section also explains the hardware/software mappings of the project. However,
since our project does not have any hardware components, we will leave this section
blank. Additionally, how we handle persistent data is explained in detail and the access
control and security of our system will be explained. Our project does not deal with big
data and we do not require any special access or authentication from our users,
therefore these sections will be rather short.



3.2. Subsystem Decomposition

We will follow three-tier architecture to divide the subsystem into three different layers:
1. Interface
2. Application Logic
3. Server

Figure 3.1: Three-tier decomposition of our Application

This particular style of subsystem decomposition architecture has been selected based
on the needs of our application. Other architectures, like four-tier or simple server-client
architectures, can be possible options, but will either create an unnecessary layer or
prevent logical hierarchical separation of different systems. The Interface subsystem
layer is based on the user device, in our case, Android phones. The Application logic is
also based on the user device, but it serves as a mechanism for the interface layer to
interact with the server. The lowest layer of our architecture is the Server layer which is
responsible for storing information in the database and fetching data from there. More
details about the subsystems is in the subsystem services section.

3.3. Hardware/Software Mappings

As our project does not have any hardware components, this section is left blank.

3.4. Persistent Data Management

The amount of persistent data that we manage is limited to functionalities that we
provide. We don’t store any additional or dynamic data. The data that is stored is the
user information for logging in and emergency requests. A user can add this information
during the sign up. We don’t store any data regarding the user’s location or behavior.
Our application intends to respect user privacy by not collecting unnecessary sensitive
or behavioral user information.



3.5. Access Control and Security

The application can only be accessed by registered users. In addition to this, we only
give a user access to his/her information. No user information is shared between two
users. For access to a user’s emergency contacts, the user needs to be logged into his
account which happens using verification of user credentials which is managed in the
server. There are no security risks for the user due to the limited amount of information
that is stored. The requests during an emergency are made on the server. This prevents
security issues like interception of emergency contacts information by third parties.

4. Subsystem Services

4.1 Interface Subsystem

Figure 4.1: The Interface Layer Subsystem

The interface layer subsystem contains necessary sections to display the maps and
navigation information. It also contains a VideoDetector system that helps display
detected traffic lights, traffic signs, and pedestrians. The VideoDetector fetches the
detector information from the Application Logic level subsystem. The User system is
responsible for managing the user information like username. It also helps the
application fetch emergency contacts during emergency requests. The Directions
system is responsible for showing the user the arrows after the destination has been



selected using the Map. The User will select the destination he/she is traveling to using
the map. The Map and other systems interact directly with the Application Logic Layer.
The DestinationLocation selected is then used by the Application logic to make requests
for the directions to the destination. The directions fetched are than displayed by the
using the Directions system.

4.2 Application Logic Subsystem

Figure 4.2: The Application Logic Layer

The Application Logic Layer is responsible for the control of the application, response to
user requests, and connecting the interface and server. This layer acts as a buffer
between the two layers. All the requests made by the interface layer are controlled by
the ApplicationController which in turn calls other managers based on specific functions
required by the user requests. The Map Manager is responsible for fetching the map
and managing the selection of the destination by the user. The MapManager sends the
map to the interface. On user interaction with the map, the Interface layer makes
requests to the ApplicationController which in turn based on the application status
responds to the request. The EmergencyRequestManager is responsible for managing
the requests made by the user for emergency help during an accident. The
EmergencyRequestManager uses the UserInformationManager to fetch the information



of the user’s emergency contacts from the Server Layer, and then send a notification to
the user regarding the emergency.

The DetectionManager is responsible for generating the detection of lights, signs, and
pedestrians. The manager runs Yolo detection algorithms on the images sequentially
sampled from the camera of the Android device. The information about the detections
made by the device are then sent to the interface by the application controller. The
NavigationManager is responsible for making the requests to the MapAPIManager for
directions based on the user’s location and the final destination. The requests will be
made by the Application layer based on the user’s location. We will try to optimize the
amount of requests that are being made to decrease unnecessary API requests and
computation on the Android device.

4.3 Server Subsystem

Figure 4.3: Server Subsystem Layer

The Server subsystem layer is not as extensive as the other two layers due to the small
dependency of the application on stored data. Most of the processing will take place on
the client device. The emergency functionality, login, and account creation are the only
dependencies of the application that are directly dependent on the server. Our database
is based on the server and the requests that are dependent on the database take place
on the server. We are using a MySQL database based on an Azure database. We store
information regarding username, password, and emergency contacts on the database.



5. Test Cases

Functional Tests
Register API Tests
Test ID: TS-01-1
Title: Successful User Registration

● Procedure:
1. Send a POST request to the API endpoint /api/v1/accounts/register/

with correct user data.
2. Verify that the response status code is 201 CREATED.
3. Verify that the response message is Please check your email to

activate your account.
4. Verify that the confirmation email is sent to the user's email

address.
5. Verify that the email contains the correct activation link.

● Outcome:
1. The user should be successfully registered and a confirmation

email should be sent to the user's email address. The activation link
in the email should be correct and the user should be able to
activate their account.

● Severity: High

Test ID: TS-01-2
Title: User Registration with Duplicate Email

● Procedure:
1. Send a POST request to the API endpoint /api/v1/accounts/register/

with user data containing an email address that already exists in
the database.

2. Verify that the response status code is 400 BAD REQUEST.
3. Verify that the response message is User with this email already

exists.
● Outcome:

1. The user should not be registered and an error message should be
returned stating that a user with that email address already exists.

● Severity: High

Test ID: TS-01-3
Title: Token Creation

● Procedure:



1. Send a POST request to the API endpoint /api/v1/accounts/register/
with correct user data.

2. Verify that the response status code is 201 CREATED.
3. Verify that the user's token is a unique value.

● Outcome:
1. The user's token should be a unique value.

● Severity: Medium

Test ID: TS-01-4
Title: Confirmation Email Sent

● Procedure:
1. Send a POST request to the API endpoint /api/v1/accounts/register/

with correct user data.
2. Verify that the response status code is 201 CREATED.
3. Verify that the confirmation email is sent to the user's email

address.
4. Verify that the email subject is Account Activation.
5. Verify that the email message contains the correct activation link.

● Outcome:
1. The confirmation email should be sent to the user's email address

with the correct activation link.
● Severity: Medium

Update API Tests
Test ID: TS-02-1
Title: Successful User Update

● Procedure:
1. Authenticate as a user by sending a POST request to the API

endpoint /api/v1/token/ with correct user credentials.
2. Send a PATCH request to the API endpoint

/api/v1/accounts/update/ with correct user data to update.
3. Verify that the response status code is 200 OK.
4. Verify that the response message is {'success': True}.
5. Verify that the user data has been successfully updated in the

database.
● Outcome:

1. The user data should be successfully updated in the database and
a success message should be returned.

● Severity: High



Test ID: TS-02-2
Title: User Update with Invalid Data

● Procedure:
1. Authenticate as a user by sending a POST request to the API

endpoint /api/v1/token/ with correct user credentials.
2. Send a PATCH request to the API endpoint

/api/v1/accounts/update/ with user data containing invalid data.
3. Verify that the response status code is 400 BAD REQUEST.
4. Verify that the response message contains the errors returned by

the serializer.
● Outcome:

1. The user data should not be updated in the database and an error
message should be returned containing the errors returned by the
serializer.

● Severity: Medium

Test ID: TS-02-3
Title: User Update with Missing Fields

● Procedure:
1. Authenticate as a user by sending a POST request to the API

endpoint /api/v1/token/ with correct user credentials.
2. Send a PATCH request to the API endpoint

/api/v1/accounts/update/ without providing any of the required
fields.

3. Verify that the response status code is 400 BAD REQUEST.
4. Verify that the response message is {'error': 'At least one of the

following fields must be provided: email, first_name, last_name,
password, old_password.'}.

● Outcome:
1. The user data should not be updated in the database and an error

message should be returned stating that at least one of the
required fields must be provided.

● Severity: Medium

Activation API Tests

Test ID: TS-03-1
Title: Account Activation Process

● Procedure:



1. After a user signs up, they receive the correct URL to activate their
account.

2. The user sends a GET request to the API by opening the correct
URL.

3. The API checks the incoming request.
4. If the user does not provide a valid user_id and token value, the

API returns a 400 Bad Request error.
5. If the user provides a valid user_id and token value, the API

activates the user's account and returns a "Account activated
successfully" message with a 200 OK status.

● Outcome:
1. When a GET request is sent with a valid user_id and token, the

account is successfully activated and the API returns a "Account
activated successfully" message with a 200 OK status.

2. When a GET request is sent with an invalid user_id or token, the
API returns a 400 Bad Request error.

● Severity: High

Login API Tests
Test ID: TS-04-1
Title: Test the API functionality for user login.

● Procedure:
1. Send a POST request to the '/api/v1/login/' endpoint with valid

email and password in the request body.
2. Verify that the response status code is 200 OK.
3. Verify that the response body contains user details including user

id, email, first name, last name, and token.
● Outcome:

1. The API should return a response with status code 200 OK and
user details in the response body when the user credentials are
correct.

2. The API should return a response with status code 400 Bad
Request and an error message in the response body when the user
credentials are incorrect or missing.

● Severity: Medium

Logout API Tests
Test ID: TS-05-1, TS-05-2
Title: Test logout API



1. Test that the user can successfully log out of the system.
2. Test that an authenticated user is required to access the logout API.
● Procedure:

1. Authenticate a user and obtain the token.
2. Make a POST request to the logout API with the token in the

Authorization header.
3. Verify that the response status code is 200 OK.
4. Verify that the response message is "Logged out successfully."
5. Verify that the user is logged out of the system.
6. Attempt to access a protected resource with the token.
7. Verify that the response status code is 401 Unauthorized.

● Outcome:
1. The user should be able to log out of the system successfully.
2. An authenticated user is required to access the logout API.

● Severity: Medium

Password Reset Request API Tests

Test ID: TS-06-1
Title: Test Password Reset Request API

● Procedure:
1. A POST request is made with a valid email address.
2. A successful response is received for an existing user with the

email address.
3. An unsuccessful response is received for a non-existing user with

the email address.
4. The returned response status code should be 200 OK.

● Outcome:
1. When a POST request is made with a valid email address and the

email is registered, a message "If the email you entered is valid,
you will receive instructions on how to reset your password in your
email shortly." is returned along with a 200 OK status code.

2. When a POST request is made with a valid email address and the
email is not registered, the same message is returned along with a
200 OK status code.

3. When a POST request is made with an invalid email address, an
error message and a 400 Bad Request status code are returned.

● Severity: High

Password Reset Confirm API Tests



Test ID: TS-07-1
Title: Test Password Reset Confirm API

● Procedure:
1. Set up the user and generate a password reset token and

encoded_pk.
2. Hit the "Reset Password API" endpoint with the token and

encoded_pk in the URL, and provide a new password and its
confirmation in the request body.

3. Check that the response has a status code of 200 and the message
'Password reset complete'.

4. Verify that the user's password has been successfully reset in the
database.

● Outcome:
1. The user should be successfully set up with valid credentials.
2. The password reset token and encoded_pk should be generated

and retrieved successfully.
3. The "Reset Password API" endpoint should accept the token and

encoded_pk in the URL and the new password in the request body.
4. The response from the API should have a status code of 200 and

the message 'Password reset complete'.
5. The user's password should be successfully updated in the

database with the new password.
● Severity: High

Urgent Contacts API Tests

Test ID: TS-08-1
Title: Get All Urgent Contacts

● Procedure:
1. Send a GET request to 'api/v1/urgent-contacts/' endpoint with a

valid authentication token.
● Outcome:

1. Response status code should be 200.
2. Response body should contain all urgent contacts in the database

serialized as a JSON array.
● Severity: Low

Test ID: TS-08-2
Title: Create a New Urgent Contact

● Procedure:



1. Send a POST request to 'api/v1/urgent-contacts/' endpoint with a
valid JSON payload containing a new urgent contact.

● Outcome:
1. Response status code should be 201.
2. Response body should contain the serialized JSON representation

of the newly created urgent contact.
3. The created urgent contact should be stored in the database.

● Severity: High

Test ID: TS-08-3
Title: Create a New Urgent Contact with Invalid Data

● Procedure:
1. Send a POST request to 'api/v1/urgent-contacts/' endpoint with an

invalid JSON payload.
● Outcome:

1. Response status code should be 400.
2. Response body should contain an error message indicating the

validation error.
● Severity: Medium

Test ID: TS-08-4
Title: Get Urgent Contacts without Authentication

● Procedure:
1. Send a GET request to 'api/v1/urgent-contacts/' endpoint without

authentication token.
● Outcome:

1. Response status code should be 401.
2. Response body should contain an error message indicating that

authentication is required.
● Severity: High

Test ID: TS-08-5
Title: Try to Create Urgent Contact without Authentication

● Procedure:
1. Send a POST request to 'api/v1/urgent-contacts/' endpoint without

authentication token.
● Outcome:

1. Response status code should be 401.



2. Response body should contain an error message indicating that
authentication is required.

● Severity: High

Urgent Contacts Send Email API Tests

Test ID: TS-09-1
Title: Test the Notification System for Urgent Contacts

● Procedure:
1. Create a user.
2. Create at least one urgent contact for the user.
3. Make a POST request to the API with the following payload:

{
"location": "123 Main St, Anytown USA"
}

4. Verify that the response status code is 200.
5. Verify that the response message is "Urgent contacts have been

informed."
6. Verify that the email is sent to the correct recipients with the correct

subject and message.
● Outcome:

1. The response status code should be 200.
2. The response message should be "Urgent contacts have been

informed."
3. The email should be sent to the correct recipients with the correct

subject and message.
● Severity: High

Test ID: TS-09-2
Title: Test Required Location Field Validation for Urgent Contacts

● Procedure:
1. Create a user.
2. Create at least one urgent contact for the user.
3. Make a POST request to the API with the following payload:
4. {}
5. Verify that the response status code is 400.
6. Verify that the response error message is "Location is required."
7. Verify that the email is not sent.

● Outcome:
1. The response status code should be 400.
2. The response error message should be "Location is required."



3. The email should not be sent.
● Severity: Medium

Test ID: TS-09-3
Title: Test Notification System Error Handling for Missing Urgent Contacts

● Procedure:
1. Create a user.
2. Make a POST request to the API with the following payload:

{
"location": "123 Main St, Anytown USA"
}

3. Verify that the response status code is 400.
4. Verify that the response error message is "Urgent Contact not

found. Please add Urgent Contact to use this feature."
5. Verify that the email is not sent.

● Outcome:
1. The response status code should be 400.
2. The response error message should be "Urgent Contact not found.

Please add Urgent Contact to use this feature."
3. The email should not be sent.

● Severity: Low

Test ID: TS-09-4
Title: Test Notification System Error Handling for Failed Email Sending

● Procedure:
1. Create a user.
2. Create at least one urgent contact for the user.
3. Make a POST request to the API with the following payload:

{
"location": "123 Main St, Anytown USA"
}

1. Mock the send_mail function to raise an exception.
2. Verify that the response status code is 500.
3. Verify that the response error message is the exception message.
4. Verify that the email is not sent.

● Outcome:
1. The response status code should be 500.
2. The response error message should be the exception message.
3. The email should not be sent.

● Severity: High



Specific Urgent Contact API Tests

Test ID: TS-10-1
Title: Test Creation and Retrieval of Urgent Contacts

● Procedure:
1. Create a user and log in.
2. Add a new urgent contact using POST method to the

'/api/v1/urgent-contacts/' endpoint.
3. Retrieve the created urgent contact using GET method to the

'/api/v1/urgent-contacts/<id>/' endpoint.
● Outcome:

1. A new urgent contact should be created with the given details.
2. The response of the GET request should contain the details of the

created urgent contact.
● Severity: High

Test ID: TS-10-2
Title: Test Update and Retrieval of Urgent Contacts

● Procedure:
1. Create a user and log in.
2. Add a new urgent contact using POST method to the

'/api/v1/urgent-contacts/' endpoint.
3. Update the urgent contact using PUT method to the

'/api/v1/urgent-contacts/<id>/' endpoint.
4. Retrieve the updated urgent contact using GET method to the

'/api/v1/urgent-contacts/<id>/' endpoint.
● Outcome:

1. The urgent contact should be updated with the new details.
2. The response of the GET request should contain the updated

details of the urgent contact.
● Severity: High

Test ID: TS-10-3
Title: Test Retrieval of User's Urgent Contacts

● Procedure:
1. Create a new user object.
2. Login with the newly created user's credentials.
3. Send a GET request to

/api/v1/urgent-contacts/my-urgent-contacts/.
4. Check that the response status code is 200.
5. Check that the response contains a list of urgent contact objects.



6. Check that the urgent contact objects in the response belong to the
logged-in user.

● Outcome:
1. The response status code should be 200.
2. The response should contain a list of urgent contact objects.
3. The urgent contact objects in the response should belong to the

logged-in user.
● Severity: Medium

Test ID: TS-10-4
Title: Test deleting an urgent contact

● Procedure:
1. Create a new user object.
2. Login with the newly created user's credentials.
3. Create a new urgent contact object for the logged-in user.
4. Send a DELETE request to

/api/v1/urgent-contacts/{urgent_contact_id}/delete_urgent_contact/,
where urgent_contact_id is the ID of the urgent contact object
created in step 3.

5. Check that the response status code is 204.
6. Send a GET request to

/api/v1/urgent-contacts/my-urgent-contacts/.
7. Check that the response status code is 200.
8. Check that the response does not contain the deleted urgent

contact object.
● Outcome:

1. The response status code after the DELETE request should be
204.

2. The response status code after the GET request should be 200.
3. The response after the GET request should not contain the deleted

urgent contact object.
● Severity: High

Test ID: TS-10-5

Title: Test if a user can add an urgent contact for themselves

● Procedure:
1. Create a user and get their authentication token.
2. Send a POST request to the endpoint with the authentication token

in the header and the urgent contact data in the body.



3. Check that the response has a status code of 201 and that the
urgent contact data in the response body matches the data sent in
the request.

● Outcome:
1. If the test passes successfully, the system should return a status

code of 201 indicating that the urgent contact was successfully
created, and the urgent contact data in the response body should
match the data sent in the request.

● Severity: Medium

Test ID: TS-10-6
Title: Test if a user can update an urgent contact they added

● Procedure:
1. Create a user and get their authentication token.
2. Add an urgent contact for the user.
3. Send a PATCH request to the endpoint with the urgent contact ID,

the authentication token in the header, and the updated urgent
contact data in the body.

4. Check that the response has a status code of 200 and that the
urgent contact data in the response body matches the updated data
sent in the request.

● Outcome:
1. If the test passes successfully, the system should return a status

code of 200 indicating that the urgent contact was successfully
updated, and the urgent contact data in the response body should
match the updated data sent in the request.

● Severity: Medium

Test ID: TS-10-7

Title: Test updating an urgent contact with invalid data

● Procedure:
1. Create a new urgent contact object with the user's account details.
2. Attempt to update the urgent contact object with invalid data.
3. Check that the response status code is 400 and the response body

contains an error message indicating the invalid data.
● Outcome:



1. The response status code should be 400 and the response body
should contain an error message indicating the invalid data.

● Severity: Medium

Test ID: TS-10-8

Title: Test deleting an urgent contact

● Procedure:
1. Create a new urgent contact object with the user's account details.
2. Send a DELETE request to the urgent contact detail endpoint with

the urgent contact object's id.
3. Check that the response status code is 204 and the urgent contact

object is no longer in the database.
● Outcome:

1. The response status code should be 204 and the urgent contact
object should no longer exist in the database.

● Severity: High

Database Tests

Test ID: TS-11-1
Title: Verify that a new user can be created in the database

● Procedure:
1. Create a new User object with valid data.
2. Save the object to the database.
3. Retrieve the object from the database.
4. Verify that the retrieved object has the same data as the original

object.
● Outcome:

1. The new User object should be saved to the database and its data
should match the original object.

● Severity: Medium

Test ID: TS-11-2
Title: Verify that a user can be updated in the database

● Procedure:
1. Create a User object in the database.
2. Update the object with new data.
3. Save the object to the database.
4. Retrieve the object from the database.
5. Verify that the retrieved object has the updated data.



● Outcome:
1. The User object should be updated in the database with the new

data.
● Severity: Medium

Test ID: TS-11-3
Title: Verify that a user can be deleted from the database

● Procedure:
1. Create a User object in the database.
2. Delete the object from the database.
3. Attempt to retrieve the object from the database.
4. Verify that the object cannot be retrieved.

● Outcome:
1. The User object should be deleted from the database and cannot

be retrieved.
● Severity: High

Test ID: TS-11-4
Title: Verify that a relationship between two models is created in the database

● Procedure:
1. Create a User object in the database.
2. Create a Profile object in the database, associated with the User

object.
3. Retrieve the Profile object from the database.
4. Verify that the retrieved object has the correct User object

associated with it.
● Outcome:

1. The Profile object should be created in the database and
associated with the correct User object.

● Severity: Medium

Non-functional Tests
Performance Tests
Test ID: PCU-001
Title: Evaluate the maximum number of concurrent users the system can handle

● Procedure:
1. Define a range of concurrent users to test, such as 10, 50, 100, and

500 users.
2. Use a load testing tool like Apache JMeter to simulate the specified

number of concurrent users accessing the system.



3. Increase the number of concurrent users until the system starts to
show performance degradation.

4. Measure the response time, throughput, and resource utilization at
different levels of concurrent users.

5. Repeat the test multiple times for each level of concurrent users to
ensure consistent results.

6. Analyze the data to determine the maximum number of concurrent
users the system can handle before showing signs of performance
degradation.

7. Use the data to optimize the system and improve its scalability and
performance.

● Outcome:
1. Determine the maximum number of concurrent users that the

system can handle before showing performance degradation.
2. Identify the performance bottlenecks related to the system's

concurrent user handling capabilities.
3. Ensure that the system can handle a sufficient number of

concurrent users under expected usage conditions.
● Severity: High

Test ID: API-001
Title: Evaluate the response time of a single API request under different load
conditions

● Procedure:
1. Define a range of load conditions to test, such as 10, 50, 100, and

500 requests per second.
2. Use a load testing tool like Apache JMeter to simulate the specified

number of requests per second and send requests to the API
endpoint.

3. Measure the response time for each request under each load
condition and record the results.

4. Repeat the load testing multiple times for each load condition to
ensure consistent results.

5. Analyze the data to identify any trends or issues in API
performance under different load conditions.

6. Determine the optimal load conditions for the system.
7. Use the data to optimize the API and improve its scalability and

performance.
● Outcome:

1. Identify the optimal load conditions for the system's API.



2. Determine the maximum load that the API can handle before
showing signs of performance degradation.

3. Identify the performance bottlenecks related to the API's response
time under different load conditions.

4. Ensure that the API can handle expected usage conditions with
acceptable response times.

● Severity: Medium

Test ID: DBL-001
Title: Evaluate the impact of database load on system performance

● Procedure:
1. Define a range of database load conditions to test, such as 10, 50,

100, and 500 database queries per second.
2. Use a load testing tool like Apache JMeter to simulate the specified

number of database queries per second and concurrent users
performing database-intensive operations on the system.

3. Measure the response time, throughput, and resource utilization of
the system under different levels of database load.

4. Repeat the load testing multiple times for each load condition to
ensure consistent results.

5. Analyze the data to determine the impact of database load on
system performance and identify any performance bottlenecks
related to the database.

6. Use the data to optimize the database and improve its scalability
and performance.

● Outcome:
1. Determine the impact of database load on system performance.
2. Identify the performance bottlenecks related to the database under

different load conditions.
3. Ensure that the database can handle expected usage conditions

with acceptable response times.
4. Optimize the database for improved scalability and performance.

● Severity: High

Test ID: STC-001
Title: Evaluate the performance of the system under stress conditions

● Procedure:
1. Define a range of stress conditions to test, such as 1000, 5000, and

10000 concurrent users and requests per second.



2. Use a load testing tool like Apache JMeter to simulate a heavy load
on the system.

3. Measure the response time, throughput, and resource utilization of
the system under heavy load.

4. Monitor the system for errors, crashes, or other signs of
performance degradation.

5. Repeat the load testing multiple times for each stress condition to
ensure consistent results.

6. Analyze the data to determine the maximum load the system can
handle before showing signs of performance degradation and
identify any performance bottlenecks under stress conditions.

7. Use the data to optimize the system and improve its scalability and
performance.

● Outcome:
1. Determine the maximum load that the system can handle before

showing signs of performance degradation.
2. Identify the performance bottlenecks related to the system's

resource utilization under heavy load.
3. Ensure that the system can handle expected usage conditions

under stress conditions without crashes or errors.
4. Optimize the system for improved scalability and performance.

● Severity: High

Security Tests
Test ID: ST-1
Title: SQL injection

● Procedure:
1. Identify a form or input field that accepts user input that will be used

in a database query.
2. Enter SQL code into the input field that will modify or delete data

from the database.
3. Submit the form or input and verify that the SQL code was not

executed and data was not modified or deleted.
● Outcome:

1. The system should detect and prevent SQL injection attacks.
● Severity: High

Test ID: ST-2
Title: Cross-site scripting (XSS)

● Procedure:



1. Identify a form or input field that accepts user input that will be
displayed on a web page.

2. Enter HTML or JavaScript code into the input field that will be
executed when the page is loaded.

3. Reload the page and verify that the code was not executed.
● Outcome:

1. The system should detect and prevent XSS attacks.
● Severity: High

Test ID: ST-3
Title: Password security

● Procedure:
1. Attempt to create a new account with a weak password (e.g.

"password" or "123456").
2. Verify that the password is rejected and the user is prompted to

enter a stronger password.
3. Attempt to log in with a correct username and a weak password.
4. Verify that the login attempt is rejected and the user is prompted to

enter a stronger password.
● Outcome:

1. The system should enforce strong password requirements and
prevent login attempts with weak passwords.

● Severity: Medium

Test ID: ST-4
Title: User authentication and authorization

● Procedure:
1. Attempt to access a protected resource (e.g. a page or API

endpoint) without logging in.
2. Verify that the access is denied and the user is redirected to the

login page.
3. Attempt to access a protected resource with a valid username and

password.
4. Verify that the access is granted and the resource is displayed or

returned.
5. Attempt to access a protected resource with an invalid username

and password.
6. Verify that the access is denied and the user is prompted to enter

valid credentials.
● Outcome:



1. The system should enforce authentication and authorization rules
and prevent unauthorized access to protected resources.

● Severity: High

Test ID: ST-5
Title: Input validation

● Procedure:
1. Attempt to enter invalid data into a form or input field (e.g. a string

where a number is expected).
2. Verify that the data is rejected and the user is prompted to enter

valid data.
3. Attempt to enter malicious data into a form or input field (e.g. a

script or SQL code).
4. Verify that the data is rejected and the user is prompted to enter

valid data.
● Outcome:

1. The system should validate all user input and prevent malicious or
invalid data from being processed.

● Severity: Medium

Logging Tests
Test ID: LT-1
Title: Test if all significant events in the system are logged

● Procedure:
1. Perform actions in the system that are expected to generate logs.
2. Check the logs to ensure that all significant events have been

logged.
● Outcome:

1. All significant events in the system should be logged.
● Severity: High

Test ID: LT-2
Title: Test if the logs are properly formatted

● Procedure:
1. Generate some logs in the system.
2. Check the format of the logs.
3. Ensure that the logs contain all necessary information, such as

timestamps and severity levels.
● Outcome:



1. The logs should be properly formatted and contain all necessary
information.

● Severity: Medium

Test ID: LT-3
Title: Test if the logs are secure

● Procedure:
1. Generate some logs in the system.
2. Check that the logs are not accessible by unauthorized users.

● Outcome:
1. The logs should be secure and not accessible by unauthorized

users.
● Severity: High

Test ID: LT-4
Title: Test if the logs are rotated and archived

● Procedure:
1. Generate a large number of logs.
2. Check that logs are rotated and archived at regular intervals.
3. Check that archived logs are accessible when needed.

● Outcome:
1. The logs should be rotated and archived at regular intervals and

archived logs should be accessible when needed.
● Severity: Medium

Image Detection Tests
Test ID: ML -1
Title: Test if pedestrians are detected in the image

● Procedure:
1. Run the trained yolo model on an image containing pedestrians

walking on the street.
● Outcome:

1. Check if the pedestrians are being detected by the model.
Otherwise, we will train the model on more data.

● Severity: High

Test ID: ML -2
Title: Test if traffic lights are detected in the image

● Procedure:



1. Run the trained yolo model on an image containing traffic lights of
different colors.

● Outcome:
1. Check if the traffic lights are being detected by the model.

Otherwise, we will train the model on more data.
● Severity: High

Test ID: ML - 3
Title: Test if traffic signs are detected in the image

● Procedure:
1. Run the trained yolo model on an image containing traffic signs on

the road.
● Outcome:

1. If the traffic signs are being detected by the model, then we are ok.
Otherwise, we will train the model on more data.

● Severity: High

Test ID: ML - 4
Title: Test if the model can be run on an android device
Procedure:

1. Run yolo image detector on an android device.
2. Check if it can be run on more simpler devices.

● Outcome:
1. If the model can be run on an Android device, then we will locally

run the detector in the application. Otherwise, we will find
alternative mechanisms.

● Severity: High

Test ID: ML - 5
Title: Find the time take for processing each image on the device
Procedure:

1. Run the yolo image detector on a selected device.

● Outcome:
1. If the model can be run on the device in feasible time, then we will

locally run the detector in the application. Otherwise, we will find
alternative mechanisms to decrease run time of the model.

● Severity: High

Augmented Reality Tests



Test ID: AR - 1
Title: Check if the turn-by-turn navigation data is properly acquired from the
Mapbox API.
Procedure:

1. Login to the application.
2. Choose the destination path.
3. Click “Navigate” button.
4. Check if turns are properly marked in the Google Maps view, which

is below the real-life view.

● Outcome:
1. If the turns are marked properly, then we are done. Otherwise,

there is a bug in marking algorithm. It should be fixed. Additionally,
check if Mapbox API provides the correct latitude and longitude
values.

● Severity: High

Test ID: AR - 2
Title: Check if the deployed augmented reality markers are correctly put.
Procedure:

1. Login to the application.
2. Choose the destination path.
3. Click “Navigate” button.
4. Check the actual real-life locations of the AR markers.

● Outcome:
5. Altitude can cause problem. If this is the case, deploy Terrain

Anchors rather than Geospatial Anchors (in the same Google
Geospatial library). If the accuracy is low, wait for a few seconds
and test it again.

● Severity: High

Test ID: AR - 3
Title: Check if the deployed augmented reality markers are pointed to the correct
turn direction (left or right).
Procedure:

1. Login to the application.
2. Choose the destination path.
3. Click “Navigate” button.
4. Check the actual real-life locations of the AR markers.



● Outcome:
1. If they are not aligned properly to show the turn directions, then the

rotational pose values are not entered correctly. Check the
algorithm that calculates those values and fix it. Otherwise, it
passes the test.

● Severity: High



6. Consideration of Various Factors in Engineering Design

When designing an engineering project, various factors are considered. These factors
can vary from economic to socio-cultural aspects. This situation is also valid in our
senior project. Here are all the factors that we think are important in our progress:

● Public Health: RoadVisor does not necessarily have an impact on public health.
Usually, projects in the medical domain focus on this factor. Therefore public
health will not be discussed further.

● Safety: Both the drivers’ and pedestrians’ safety is one of the most important
factors for RoadVisor. RoadVisor is a mobile application that requires drivers to
look at the screen of their phones. We recognize that this can be risky if the
driver does not pay enough attention to the road. That is why our machine
learning-backed features, such as traffic sign/light detection and pedestrian
detection, play a massive role in this matter. We highly care about that the
driver’s attention must be primarily on the road. Therefore, if the driver losses
their focus on the road, these features will help the driver to get back to it.
Additionally, independent from our application, we must consider the human
factor. This means that drivers can get distracted because of other factors. They
can be tired, or some other elements might catch their attention. Hence,
RoadVisor has the potential to increase the safety of the drivers.

● Cultural: RoadVisor does not necessarily have an impact on cultural factors
either. Therefore it will not be discussed further.

● Environmental: RoadVisor is primarily a navigation application. And like all
navigation applications, it aims to provide the shortest and fastest path to the
destination. Because the drivers know how to go to their destination beforehand,
they will probably spend less time trying to find the proper direction. This will also
mean that their car will exhaust less carbon dioxide. Therefore RoadVisor can
have a positive effect on the environment.

● Economic: The inspiration that led us to develop RoadVisor is the augmented
reality feature in high-tier Mercedes-Benz cars. As mentioned, this feature is only
available in expensive Mercedes cars. The aim of RoadVisor is to bring this
feature to mobile phones; therefore, everyone with a suitable phone can access
this feature. From an economic perspective, this will save drivers money if they
want this feature. Also, they do not require to purchase any external pieces as
they already have their phones. That is why the economic factor is the most
important one among all factors for RoadVisor.

● Welfare: This factor can be addressed with the economic factor. It is mentioned
that RoadVisor can help drivers to save money. If we think about a country or
globally, people can spend these resources on the things they need. With these
needs being satisfied, welfare can increase.



● Global: Considering the economic, safety and environmental effects of
RoadVisor, if these aspects are scaled to have a global role, it is safe to say that
RoadVisor can have positive global effects.

● Social: It is worth mentioning that with the safety provided for drivers and
pedestrians, roads can be safer. By having safe roads and safety measures, this
can create a sense of security among people. Therefore RoadVisor can
positively affect the safety of society and each person in this society.

Factors Level of Effect
(on a scale of 0 to 10)

Public Health 1

Safety 9

Cultural 0

Environmental 6

Economic 10

Welfare 8

Global 7

Social 7
Figure 6.1: Various Factors Affecting RoadVisor and Their Importance

7. Teamwork Details

In this section, the teamwork details will be explained in detail.

7.1 Contributing and Functioning Effectively on the Team

Contribution of each team member is essential for the future and robustness of the
project. Each team member is required to contribute to the project and if the percentage
of contribution of each team member is similar to each other, a fair and efficient working
environment can be achieved. Functioning of each team member is also crucial
because software development is a complex and collaborative process that requires a
team effort to achieve successful outcomes. Each stage of project planning and
development requires specific skills and expertise that are often spread among team
members. Effective functioning of team members is essential for and improves the



completeness and quality of work, meeting deadlines, collaboration, communication and
cost effectiveness. Here is the contribution of each team member to the project.

It should be noted that all the decision making and project planning involved all of the
team members’ thoughts and judgment. Similarly, all of the team members contributed
equally to the documentation of the project.

Emin Berke Ay: He is working on the frontend portion of the application. He has
regularly contributed to the project reports. He regularly attends meetings. He has made
significant contributions to the Design report. He is working on the sign up part of the
frontend.

Nurettin Onur Vural: He has been working on the frontend. He has made contributions
to all reports. He also regularly attends team discussions. He has also made
contributions to the Design report.

Arda İçöz: He is responsible for working on the frontend. Arda has contributed
extensively to the reports. He also worked on formatting documents. He served as the
team lead during the previous semester. He regularly participates in meetings. During
CS491, he has made significant progress in the area of the frontend. The progress
involves the AR navigation section of the application. He has also made substantial
contributions to the Design report.

Ammaar Iftikhar: He worked on Machine learning models. Completed and tested the
lane detection model during CS491. He contributed to all the reports. He regularly
participates in meetings. He is also responsible for creating and managing the group
website. During CS492, he completed the yolo model for the detection of traffic lights,
traffic signs, and pedestrians. The output of the model was analyzed, and they seem to
be promising. He also contributed to the Design report. He is serving as the team leader
this semester. In this role, he is responsible for arranging meetings and setting
deadlines and tasks. He is currently working on making the yolo model work on Android
devices.

Ahmet Faruk Ulutaş: He is responsible for working on the backend portion of the
application. He completed implementing the backend and setting up the server. He has
also contributed significantly to the Design report. He also made a decent amount of
contributions in the frontend area. He is also regularly attending the meetings. During
CS492, he has been completing tasks assigned.



7.2 Helping creating a collaborative and inclusive environment

Helping create a collaborative and inclusive environment is essential for enhancing
productivity, improving problem-solving, increasing innovation, delivering high-quality
products, and improving team dynamics. We, as a team, realized the importance of
these and each team member did their best to help achieve a collaborative and
inclusive environment. We did our best to not leave anyone behind or out. For instance,
we tried to schedule our meetings so that everyone on the team could join it. It is quite
difficult to find a time slot suitable to 5 people every single time, but inclusiveness is
very essential for a team to function. It also helps boost morale and keeps the
momentum and the dynamics of the team going. We also tried to find a time slot
suitable for every one of us when meeting with our supervisors and innovation experts
since those are also quite essential meetings and we frankly did not want anyone to be
left behind. However, we do not live in a perfect world and setbacks do happen.
Nevertheless, we were prepared for them as well. When a team member, for any
reason, could not join a meeting we always kept them up to date by giving a brief about
the meeting and the key points discussed in that meeting. This not only kept them up to
date, but also felt them included as well.

7.3 Taking lead role and sharing leadership on the team

Taking a lead role and sharing leadership on a team is essential for achieving success
in any project. When one member of a team takes on a lead role, it can help the team
stay organized, focused, and productive. Without a conductor, the orchestra would not
perform correctly. This is also the case for a team without a leader. Sharing leadership
fosters collaboration, increases accountability, improves delegation, enhances team
dynamics, builds leadership skills, and provides greater flexibility. By working together
and sharing leadership responsibilities, teams can achieve their goals more effectively
and efficiently. We approached sharing leadership in a different manner. We have a
team leader. Then, we have sub-team leaders. For instance, the frontend team has a
separate leader then the main leader, but the sub-team leaders also report to the main
leader. Sub-team leaders do not change, but we rotate the main leadership role among
team members. This way, leadership roles are not burdened on a single person and the
workload that being a leader brings is also shared among team members.



References

[1] E. Zvornicanin, “What is Yolo Algorithm?,” Baeldung on Computer Science, 04-Nov-2022.
[Online]. Available:
https://www.baeldung.com/cs/yolo-algorithm#:~:text=3.-,You%20Only%20Look%20Once
%20(YOLO),main%20reason%20for%20its%20popularity. [Accessed: 13-Mar-2023].

[2] A. Pavlov, “Bosch Small Traffic Lights Dataset,” Kaggle, 15-Oct-2020. [Online]. Available:
https://www.kaggle.com/datasets/researcherno1/small-traffic-lights. [Accessed:
13-Mar-2023].

[3] V. Sichkar, “Traffic signs dataset in Yolo Format,” Kaggle, 03-Apr-2020. [Online]. Available:
https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-dataset-in-yolo-format.
[Accessed: 13-Mar-2023].

[4] “Papers with code - caltech pedestrian dataset dataset,” Dataset | Papers With Code.
[Online]. Available: https://paperswithcode.com/dataset/caltech-pedestrian-dataset.
[Accessed: 13-Mar-2023].

[5] VladYatsenko, “Vladyatsenko/car-assistant-android: Application which detects traffic signs
using camera,” GitHub. [Online]. Available:
https://github.com/VladYatsenko/car-assistant-android. [Accessed: 13-Mar-2023].

[6] Tensorflow, “Models/research/object_detection at master · Tensorflow/models,” GitHub.
[Online]. Available:
https://github.com/tensorflow/models/tree/master/research/object_detection. [Accessed:
13-Mar-2023].

[7] Kmshack, “Kmshack/trafficlightsdetector-android: TrafficLights detector for Android,” GitHub.
[Online]. Available: https://github.com/kmshack/TrafficLightsDetector-Android.
[Accessed: 13-Mar-2023].

[8] Caffe. [Online]. Available: http://caffe.berkeleyvision.org/. [Accessed: 13-Mar-2023].

[9] Davidbrai, “Davidbrai/deep-learning-traffic-lights: Code and files of the deep learning model
used to win the NEXAR traffic light recognition challenge,” GitHub. [Online]. Available:
https://github.com/davidbrai/deep-learning-traffic-lights. [Accessed: 13-Mar-2023].

[10] “Car and pedestrian detection using an Android smartphone,” YouTube, 11-Oct-2016.
[Online]. Available: https://www.youtube.com/watch?v=Z1WfI7v7ibM. [Accessed:
13-Mar-2023].



[11] Gebort, “Gebort/FESTU.Navigator: Kotlin AR app for Indoor Navigation,” GitHub. [Online].
Available: https://github.com/Gebort/FESTU.Navigator. [Accessed: 13-Mar-2023].

[12] “How to: Augmented reality,” YouTube, 16-Jun-2021. [Online]. Available:
https://www.youtube.com/watch?v=AHaSnyikRpU. [Accessed: 13-Mar-2023].

[13] “Phiar - live Ar Navigation,” YouTube, 16-Jan-2020. [Online]. Available:
https://www.youtube.com/watch?v=iD1mv6qqg54. [Accessed: 13-Mar-2023].


